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The theory of diffuse scattering of electrons in the presence of Bragg scattering is examined with partic- 
ular emphasis on the structure information which can be obtained from diffuse scattering under such 
conditions. The maximum information which can be extracted from intensity distributions is shown to 
be included in a scattering function (f(s)f*(s+ h)> of three continuous and three discrete variables in 
reciprocal space. The Fourier transform into direct space of this function renders a six-dimensional 
distribution which is shown to describe position as well as correlation for fluctuations responsible for 
diffuse scattering. This function in direct space is termed a distribution-correlation function. The Patter- 
son function and the imaginary potential associated with anomalous absorption are shown to be included 
as special cases, viz. a three-dimensional section and a three-dimensional projection, respectively. The 
additional structure information which can be obtained from the distribution-correlation function as 
compared with the ordinary Patterson function, is discussed for different types of diffuse scattering. As 
an example anomalous absorption effects in many beam cases are discussed with particular reference to 
characteristic X-ray emission. Numerical calculations indicate that such effects can be exploited for 
determination of sites of dissolved atoms. 

1. Introduction 

Whereas diffuse scattering of X-rays and neutrons have 
been used extensively in order to obtain information 
about defects and excitations in crystals, the utilization 
of diffuse scattering in electron diffraction patterns for 
such purposes has been more limited. 

One important reason for this has been the lack of an 
adequate theoretical basis for quantitative interpreta- 
tion of diffuse scattering of electrons. Such a theory 
must necessarily take into account the simultaneous 
Bragg scattering. However, starting with Kainuma's 
(1955) work on Kikuchi lines, a number of authors 
have contributed to a theory which takes into account 
Bragg scattering of the incident beam as well as the 
Bragg scattering between diffuse beams. A quite general 
theory, based on a slice approach, was developed in a 
previous paper (Gjonnes, 1966).* There it was shown 
that the Bragg scattering effects in the distribution of 
diffuse scattering can be described partly as a redistri- 
bution of intensity between diffuse scattering in direc- 
tions k0 + s + h coupled through Bragg reflexions, partly 
as an enhancement or reduction of the sum of inten- 
sities, ~I,+h, over all these directions. The latter effect 

h 
is closely connected with anomalous absorption and 
depends on certain phase relationships in the diffuse 
scattering. Hence it will appear that this effect may con- 
tain structure information of a kind which can not be 
obtained from a scattering experiment under kinematic 
conditions. Actually, the use of such anomalous effects 
in the diffuse scattering has been suggested by some 
authors (Cowley, 1965; Gjonnes, 1965). 

* Referred to later as I 

From such considerations it seems desirable to per- 
form a general investigation, based on recent theories, 
into the information which may be contained in the 
distribution of diffuse scattering, especially under many 
beam conditions. 

The purpose of this paper is to present some results 
from such an investigation, in particular to discuss the 
representation of this structure information in terms of 
a distribution function. The connexion with anomalous 
absorption in the discrete beams is also discussed. 

2. The theory of Bragg diffraction effects 
in diffuse scattering 

The theory of Bragg diffraction effects in the diffuse scat- 
tering of electrons has been developed by several au- 
thors (Kainuma, 1955; Takagi, 1958; Fujimoto & Kai- 
numa, 1963; Fukuhara, 1963; Gjonnes, 1966 (I); Fuji- 
moto & Howie, 1966; Cowley & Pogany, 1968). Here 
we shall use the formulation given in I. Let us sketch 
briefly the basic ideas and general results. 

Diffuse scattering originates from the non-periodic 
part, Ua, of the Coulomb interaction, U(r, rj) between 
the incident electron, r, and the particles, rj, of the ob- 
ject: 

2 Zj _ 

U(r, rj) =YU~ exp [ihr] + ga(r, r j ) -  U~ + Ua 
h 

ga(r, rj) = I f(s,r~) exp [isr]ds. (1) 

Here Zj is the charge of t he j th  particle, h are the recip- 
rocal-lattice vectors, s is a vector in reciprocal space 
and az/is the first Bohr radius. 
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Inelastic scattering arise through time dependence of 
the coordinates rl, which in the most general case 
should be treated as operators. It is found, however, 
that diffraction effects at high or moderate energies are 
not significantly infuenced by this time dependence, 
that is by the energy transfer. Hence, the rj's can, for 
our purpose, be treated as parameters and be sup- 
pressed during the scattering calculations. The energy 
transfer in elastic scattering may then be introduced at 
the end of the calculations as energy dependence in the 
scattering function ( f ( s + g ) f * ( s + g ' ) )  to be defined 
below. 

When the scattering from Ua is considered in first 
order only, and independently of the periodic part U:0, 
a kinematical theory of diffuse scattering is obtained. 
As is well known from experimental and theoretical 
studies, such an approximation is insufficient and may 
lead to incorrect interpretation of experimental pat- 
terns. Bragg scattering of the incident beam, as well as 
of the continuous distribution of diffuse scattered 
beams must be included. A formal expression can be 
obtained from the Born series of scattering. To the 
first order in the non-periodic potential, Ua, the am- 
plitude, ~u, of diffuse scattering can be written formally, 

~={1  + G U p + ( G U r ) Z +  . . . }GUa{1 + G U ~ +  . . . } ~ °  

where G=G(r , r ' )=exp  ( i k l r - r ' l ) / 4 n l r - r ' ]  is the 
Greens function for the incident electron.* 

The operators acting on the incident wave ~0 repre- 
sent, from right to left: Bragg scattering of the incident 
beam into a set of discrete beams; diffuse scattering of 
these discrete beams into a continuous distribution of 
diffuse beams; Bragg scattering between those diffuse 
beams which differ by reciprocal-lattice vectors, h. 

A more convenient expression is obtained when the 
Bragg scattering is represented by scattering matrices 
(see e.g. Hirsch, Howie, Nicholson, Pashley & Welan, 
1965), and the non-periodic potential by its Fourier 
components, f(s). On neglecting back scattering and 
taking the z axis near the incident beam direction and 
near the surface normal, one obtains for a crystal slab 
of thickness z and infinite lateral dimensions the am- 
plitude expression 

lz 
~ ( s + h ) =  ~ ~ o S n a ( k o + s , z - z x ) f ( s + g  

- f ) S f o ( k o ,  Zl)dZl (2) 

where the arguments, e.g. (k0,za), of the scattering ma- 
trix define the zero beam direction and crystal thick- 
ness. We shall be concerned mainly with Bragg scatter- 
ing through reflexions, h, lying in a section, normal or 
near normal to the z axis, through the origin of recip- 
rocal space. Similarly s is taken to be a vector in that 
section, reduced to the first Brillouin zone through the 
subtraction of g -  f. 

* The use of the Green's function operator in electron dif- 
fraction problems has been discussed by Fujiwara (1959), 
Gjonnes (1962a) and in (I). 

According to equation (2), the amplitude of diffuse 
scattering in the direction k 0 + s + h  is made up of dif- 
fuse scattering contributions from each infinitesimal 
slice dZl within the crystal: The discrete beams f which 
arise through Bragg scattering in the crystal slab (1) 
above the level zl are scattered in the slice dzl into dif- 
fuse beams k 0 + s + g  which on passing through the 
lower part (2) of the crystal are Bragg scattered into 
k0 + s +h. The different terms in the double sum over 
intermediate beams f and k0 + s + g can be represented 
by diagrams as shown in (I). 

If correlations in the non-periodic potential in the 
z direction are neglected (I; Cowley & Murray, 1968), 
the intensity expression will involve only a single inte- 
gration over thickness: 

>< f * ( s + g ' - f ' ) ) S t o ( 1 ) S ' r o ( 1 ) d z  I (3) 

where the abbreviated arguments (2) and (I) have been 
introduced instead of (k0 + s, z -  z~) and (k0, Zl) respec- 
tively. The intensity expression (3) can be divided in a 
thickness-independent part and terms which oscillate 
with the crystal thickness, z. The latter type of terms 
are important in the interpretation of electron micro= 
scope contrast from inelastic scattering (see e.g. Fuku- 
hara, 1963) and of certain effects in the diffuse scatter- 
ing from very fiat and perfect crystals (Gjonnes & Wa- 
tanabe, 1966). They are negligible, however, in diffrac- 
tion patterns from crystals with small thickness or 
orientation variations. 

The approximations implied in the intensity expres= 
sion (3), which forms the basis for the following treat= 
ment were discussed in I (see also Cowley & Murray, 
1968). The most important one is connected with the 
use of two-dimensional distributions to describe the 
diffuse scattering in reciprocal space. In order that this 
shall be valid, the diffuse scattering functions must vary 
slowly in the z direction; that is to say that the range of 
correlations in the non-periodic potential in this direc- 
tion must be short relative to typical extinction dis- 
tances. 

For numerical calculations it is often convenient to 
expand the Bragg scattering matrix elements in terms 
of the normalized Bloch waves 

exp [ik0r] exp [i~Jz]~ CJt exp [fir] 
f 

and 
exp [i(k o +s)r] exp [bTtz]~B~ exp [igr] g 

corresponding to the incident and the scattered waves. 
With such a notation one has, e.g. 

S h g ( z - z l ) =  ~BthB~ exp [ iq t ( z - zO]  . 
i 

On introducing these expansions in (3), one obtains a 
summation over band indices in the intensity expres- 
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sion. Within the present approximations, the z depen- 
dence of this expression will be contained in a product 
of the form 

I exp [i~(z-zl)] exp [i~zl] 

x exp [ -  i~C(z - Zx)] exp [ -  i~fZl]dZl 
from which it is seen that the thickness independent 
terms are those for which i=i' and j=j ' .  Restricting 
the attention to these terms only, one obtains then an 
expression for the non-oscillating part of the intensity: 

I(s + h),o,.o~ ~ = ~ ~IB~ CLIZl ~ ~ B~C}f(s + g -  f)l 2 
i j  g f  

where i = j  and iCj corresponds to intra- and inter-band 
transitions, respectively. 

The terms in the fourfold summation over g, g', f 
and f '  in equation (3) contain factors of the type 
.(f(s + h)f*(s + h')). Those with h =h '  are included also 
m a kinematical expression, i.e. 

I ~ ( s + h )  Gc(lf(s+hl z) 

However, due to the Bragg scattering prefactors in 
equation (3), one gets a redistribution of the kinema- 
tical scattering between the directions k0 + s + h which 
are coupled through Bragg reflexions. The results are 
regions of excess and deficient diffuse scattering, that 
is to say, the Kikuchi pattern. 

The remaining terms are those with h ¢ h '  in 
( f ( s + h ) f * ( s + h ' ) ) .  They do not occur in kinematic 
scattering and are peculiar to Bragg scattering effects. 
In the next section we shall discuss the nature of the 
structure information contained in these terms. 

3. Distribution-correlation function for diffuse scattering 

When kinematic scattering conditions apply, the struc- 
ture information in diffuse scattering can be repre- 
sented by a correlation function, the Patterson func- 
tion, 

P(r) = F { (I f(s) 12) } (4) 

where (If(s)[ 2) can be obtained from measurements. 
F{} means Fourier transformation; the scattering vec- 
tor s is here not restricted to the first Brillouin zone. 

The intensity expression (3) under dynamic Bragg 
scattering conditions cannot be directly related to a 
similar distribution. However, in this expression the 
non-periodic potential enters through the scattering 
function which can be written (f(s)f*(s + h)) when s is 
not restricted to the first Brillouin zone. It may be 
doubtful whether this function can be determined un- 
equivocally from experimental distributions of diffuse 
scattering in the presence of Bragg scattering. However, 
it expresses the maximum amount of structure infor- 
mation which can be extracted from such measure- 
ments. Conversely, knowledge of this function will per- 
mit calculation of the expected experimental intensity. 
Hence, we shall in this paragraph, discuss the relation 

of this function to structure, and in particular derive a 
more general relation which include equation (4) as a 
special case. 

Let us now specify f(s), viz 

f(s)=(1/s 2) (~Z~(exp [isrj]- (exp [isry]))) 
J 

where rj is the coordinate, Zj the charge of the j th  par- 
ticle in the object. The second term in the parenthesis 
is subtracted in order to exclude the contributions to 
the periodic part of the potential, when summed over j, 
this term adds up to zero for s different from a recipro- 
cal lattice vector. The bracket denotes the expectation 
value, e.g. 

( e x p  [isr~])= f • • • f ~o(rl- • .r, . . .  ) 

exp [isrj]@o(rl. • -rj . . .  )dr1. • • drj . . .  

if the object is taken to be in its ground state, 40. As 
defined, f(s) are the Fourier components of the poten- 
tial fluctuations in the object. It will simplify the dis- 
cussion if the charge fluctuations are treated instead. 
This is accomplished by removing the Coulomb deno- 
minators s 2 and (s + h) 2 from (f(s)f*(s  + h)); let us de- 
fine 

Q(s, h) = ( f (s) f*(s  + h))s2(s + h) 2 

= ~ ~ZjZj,{<exp [isrj] exp [ -  i(s + h)rj,]) 
j j '  

- ( e x p  [isrj])(exp [ -  i(s+h)rr])} (5) 

and discuss this function of six variables in reciprocal 
space. 

The corresponding function in direct space is ob- 
tained on taking the six-dimensional Fourier transform 
R(q,r) of  Q(s,h)" 

R(q,r) (21. )3 l = exp [isr] E exp [iqh]Q(s,h)ds 
h 

= ~ ~ ZjZj,{ (6(r - rjj,)fi(q - rj,)) - (fi(r - q -  ry) 
j j '  

( d ( q -  r~,))} (6) 

where r~s', is the interparticle vector r~-rj, .  
It may be evident that this function in some way de- 

scribes location as well as correlations in the charge 
fluctuations. It should also be noted that Q(s,h) varies 
continuously with s but is defined only for discrete h. 
Hence R(q,r) must be periodic in q, and non-periodic 
in r. Inspection of equation (6) reveals that the first 
term in R(q,r) expresses the probability of having a 
charge at q and another charge at a distance r from the 
former, i.e. at q+r .  After subtraction of the second 
term the fluctuations in that probability are retained. 
It may also be noticed that R(q,r) equals the integrand 
in the usual definition of a Patterson function for 
charge fluctuations. 

We must now discuss what sort of information will 
be contained in such a function R(q, r) for various types 
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of fluctuations and to what extent this information can 
be attained by measurements which depend on the mag- 
nitudes <f(s)f*(s +h)>. 

However, two important special cases of the relation 
(6) between Q and R should at once be pointed out: 
The section h=0,  through the scattering function Q 
corresponds to the kinematic intensity; its Fourier 
transform 

l exp [isr]Q(s,0)ds= f R(q,r)dq=P(r) (7) 

is, of course, the Patterson function. 
The 'projection' S Qds of the scattering function is 

related to a section through R(q,r), i.e. 

I Q(s,h)ds= f exp [ihq]R(q,0)dq. (8a) 

From equation (6) it is seen that this section describes 
the charge fluctuations in the unit cell: 

R(q,0)=<Qz)-<0> 2 where 0 = ~ Z j 0 ( q - r j ) .  (8b) 
1 

The same function is obtained when one includes only 
the contribution f romj = j '  in equation (6), that is when 
inter-particle correlations are neglected.* It will be 
shown below that the Fourier components ~b~= 
$<f(s)f*(s+h)>ds may be susceptible to measurement. 
By the same argument as above this magnitude is re- 
lated by a Fourier transformation to potential fluctua- 
tions in the unit cell. Broadly speaking, the variation 
of R(q,r) with r describes correlations in the particle 
fluctuations responsible for diffuse scattering, whereas 
the q variation describes the location of the fluctuations 
within the framework defined by the average unit cell. 
From the present point of view the q dependence may 
be considered to be the more interesting, since this re- 
presents the new feature in R(q, r) as compared with the 
Patterson function. Let us therefore discuss this part of 
the correlation distribution in particular. 

For substitutional short range order in a structure 
with one lattice site e.g. disordered Cu3Au - the r varia- 
tion contains all the interesting structure information. 
The q-variation is here trivial and only expresses the 
known fact that the deviation from the periodic struc- 
ture is located at the atomic site. The situation is clearly 
different when more than one lattice site is involved in 
the ordering, for instance in a structure with two inter- 
penetrating lattices. Then knowledge of the q-depen- 
dence will enable one to discriminate between ordering 
on the two lattices. Also when size-effects accompany 
the ordering one will expect the q-dependence to pro- 
vide useful information, since location of the fluctua- 

* The equivalence of these two functions, R(q,0) and 
R(j=~,)(q,r) depends upon r~j, = 0  for j=j" in equation (6). This 
is only valid if rj and rj, refers not only to the same particle, 
but also to the same time; which again demands that scattering 
at all energy losses should be admitted by the intensity detection 
system and be subject to the same Bragg scattering. 

tions will be somewhat different from that of the aver- 
age atoms. In fact, Cowley (1965) has reported that the 
diffuse scattering from an alloy with large size effect is 
markedly altered through Bragg scattering effects. Ra- 
ther similar arguments appear to be applicable to ther- 
mal scattering; the q-dependence of R(q, r) is expected 
to provide most useful information in structures with 
several atoms in the unit cell. 

For electronic excitations, the situation is again dif- 
ferent. Apart from plasma oscillations, correlations do 
not play an important part. For one-electron-excita- 
tions, the q-dependence, that is the location of fluctua- 
tions, may include the interesting information. Ac- 
cording to equation (8a and b), this information is con- 
tained in a projection SQds of the scattering function. 
It is known from the theory of anomalous absorption, 
see Yoshioka (1957), Gjonnes (1962b) or Whelan 
(1965), that a related projection, viz. 

I <f(s)f*(s + h)>ds 

appears in the theory of anomalous absorption. In the 
next section, we shall derive the connexion between 
Bragg scattering effects in the diffuse scattering and 
anomalous absorption in a more direct way. 

4. Anomalous absorption, 
diffuse scattering and secondary radiation 

Anomalous absorption refers to the enhancement or 
reduction of the apparent absorption which occurs 
when Bragg beams are excited by the incident beam. 
The intensity which in this way is lost or gained in the 
discrete beams, relative to normal absorption, must re- 
appear as gain or loss in the background scattering. 
When emission of secondary radiation accompanies 
inelastic scattering this emission must be enhanced or 
reduced in the same way, as has been demonstrated by 
Hirsch, Howie & Whelan (1962), Duncumb (1962), 
Hall (1966) and Miyake, Hayakawa & Miida (1968). 
From the argument presented in the previous section 
it will appear that structure information can be gained 
through the study of anomalous absorption effects. 
Such information may be obtained by studying the 
Bragg reflexions, the background scattering or the 
emission of secondary radiation. 

Let us now calculate the total intensity in the diffuse 
scattering from one layer in the crystal, using equation 
(3) above. In order to achieve this, one can first sum 
the intensities from corresponding points, s + b, in dif- 
ferent Brillouin zones. Utilizing the relation 

~ Sh~(2)S h¢(2) =6z¢ 
h 

we get with a simple change of summation variables in 
equation (3): 

~/h+S = ~<f(s+h)f*(s+h-g))~Sio(1)S*f+g.o(1) 
h g h f 
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= ~ ( [ f ( s  + h)[ 2) + ~ ~ ( f ( s  + h)f*(s 4- h 
h h g#O 

-g )  ) ~ Sto(1)S~+,,o(1) . (9) 
.f 

This result, which was referred in I, brings out clearly 
the difference between the direct, (If(s + h)[ 2) t e rms  and 
the interference terms, with g ¢ 0. The sum of the former 
type of terms is seen to be independent of the Bragg 
scattering processes and equal to the same sum under 
kinematical conditions. The last sum in equation (9) 
represents deviation in total scattering from the kine- 
matical result; that is, enhanced or reduced diffuse 
scattering. This enhancement or reduction in the diffuse 
scattering, summed over all interacting beams will, of 
course, be reflected in enhanced or reduced absorption 
from the discrete beams, i.e. anomalous absorption. 

By integrating equation (9) over s, within one Bril- 
louin zone, one now obtains the total intensity, It, of 
diffuse scattering in the pattern: 

It = f~.zonc~h l(s+h)ds= l l(s)ds 

where the last integral is taken over the whole pattern. 
With 

~g = ~ I~.~o,,:f(s + h)f*(s + h -  g))ds 

= I ( f ( s ) f * ( s - g ) ) d s  

and 
F.=~Sto(1)S;+~.o(1) 

f 
one sees from equation (9) that I t can be written 

It = Z ~gF~= lunit ccn~(q)F(q)dq 

(10a) 

(lOb) 

where ~g and Fg are Fourier components of the two- 
dimensional periodic distributions ~(q) and F(q) re- 
ferring to the level z =zt.  Since the wave function for 
the incident electron is ~ (z l )=~S:0 (1 )  exp [i(k0+f)r], 

F(q) will be the probability density, ~ * ,  of the inci- 
dent electron at the level z~. However, assuming that 
• (q) does not vary with Za, we can substitute the thick- 

ness average, (1/z) for F(q). 

The distribution ~(q) resembles R(q,0) in the pre- 
vious section. However, it is different from this function 
in two ways: Firstly, the integration over s [equation 
(10a)] is taken over a scattering function which includes 
the Coulomb denominators s 2 and (s + h) 2, hence it is 
related to potential fluctuations, instead of charge fluc- 
tuations. Further, the integration extends only over a 
plane section of reciprocal space, the integral is thus 
related to the projected potential. Thence 

~(q)--- (I v12)- ( v )  2 

where 

V= V(x,y,r:)= I V(r,r:)dz. 

By the definition [equation (10a)], ~(q) is the imaginary 
potential responsible for anomalous absorption. 

It is worth noting that equation (9) may be said to 
corroborate the simple picture in direct space of anom- 
alous absorption. Due to Bragg reflexion the probabil- 
ity density of the incident electron will not be uniform 
over the unit cell, but have maxima and minima, as 
indicated in Fig. l(a). Since this density distribution 
F(q) can be changed through changing the diffraction 
condition of the incident beam, F(q) in a sense can be 
regarded as a probe which can be used to investigate 
the distribution of diffuse scattering power within the 
unit cell. The information about location of scattering 
centra implied in this picture is reflected in phase in- 
formation in reciprocal space, Fig. l(b); the enhance- 
ment or reduction of diffuse scattering can be said to 
result from constructive or destructive interference be- 
tween diffuse scattering originating from different 
Bragg beams. 

(a) 
h 

(b) 

Fig. 1. Schematical description of anomalous absorption with 
the incident beam near a zone axis. (a) Direct space: distri- 
bution of electron probability density in a thickness average. 
(b) Reciprocal space: interference of diffuse scattering from 
several discrete beams. 

0 Ti 0 Ti 

L \ , , ,  / 1  

1.5 

- 

'qw 

(a) (b) 

Fig. 2. Calculated electron probability density in a 110 projec- 
tion of TiO. Voltage: 100 kV in all Figs. 7 beams. (a) Incident 
beam along zone axis. (b) 004 Bragg condition fulfilled. 



J. G J O N N E S  AND R. H O I E R  171 

Let us end this section with some remarks on anom- 
alous absorption effects from one-electron excitations. 
It is well known that one-electron excitations give small 
contributions to anomalous absorption. This is because 
the outer electrons are localized to a relatively small 
extent and hence contribute mainly to normal absorp- 
tion; whereas the inner electrons are responsible for 
only a small part of the diffuse scattering, so that their 
contribution to absorption, both normal and anom- 
alous, is swamped by other contributions, mainly from 
thermal scattering. If, however, anomalous absorption 
effects from contributions from inner electron excita- 
tions are studied in the background scattering or in the 
accompanying emission of X-rays, this contribution 
can be separated from other sources by means of energy 
or wavelength selection. 

An application of the present description is thus im- 
mediately suggested, that is the location of the site of 
dissolved atoms through the study of characteristic 
X-ray emission as a function of the diffraction condi- 
tion for the incident electron beam. 

The simple picture of anomalous absorption illu- 

~I"00 ~ .-'--~.. 
\ , , ' "  "--- 

r o : o  - -  . . . .  -~ | 

t0"25 I I I r ~111 (A -2) 
0 -2'5 -5'0 

Fig. 3. Calculated electron probability density on the Ti and O 
positions as a function of the excitation error, (11 ~ ; excitation 
error 004 constant ((004 = -1.8 A-2). 7 beams. 

~ ~, 2VN ~ ~ ~ 

ONb 

0 Sb,Te 
0 Sb, Te 

Fig. 4. 100 projection of cubic Nb3Sb2Tes. Thin line: unit cell 
with lattice constant 9.816 A; thick line: reduced cell used in 
the calculations; dotted line: area shown in Fig. 6. Numbers 
show atoms per site in the projection. 

strated in Fig. 1 is particularly useful in this case, since 
calculation of the magnitude ~(q) for K-shell electrons 
shows this to be a quite sharply peaked function about 
the atomic centre (see Appendix). As an approximation 
we may thus put 

IX'rayOC I f i (q-q , )F(q)dq (11) 

for the contribution to X-ray emission from the site q~. 
Calculations of relative X-ray emission probabilities 

as a function of diffraction conditions, for a particular 
distribution of the atom species under consideration, 
will thus essentially consist of calculations of the prob- 
ability distribution F(q) at the atomic sites involved. 

5. Calculations 

In order to test the possibility of localizing fluctuations 
in a structure with the method suggested, we have car- 
ried out two sets of calculations of F(q) with the inci- 
dent beam close to a zone axis, (i.e. in a many-beam 
situation). The reason for this was the sharpening of 
F(q) expected to arise from the presence of many beams. 
Such sharpening will, of course, facilitate the location 
of emission sites. 

The first set of calculations was carried out for a 
NaC1 type structure. Cubic TiO was chosen as an ex- 
ample, mainly because calculations of the distribution 
of disorder scattering was started for this structure. 

F(q) profiles were computed with the incident beam 
near a 110 zone axis, since the two types of equivalent 
lattice sites in TiO are separated in this projection. Ex- 
amples of such distributions are shown in Fig. 2(a) 
which corresponds to an incident beam along the zone 
axis, and in Fig. 2(b) where the Bragg condition is ful- 
filled for the 004 reflexion. Only the distribution within 
~- of the unit cell is shown since the distribution in the 
rest of the cell can be obtained from this part through 
simple symmetry operations. Both height and position 
of the maxima in F(q) are seen to be strongly dependent 
on the diffraction conditions. In Fig. 2(a) the maxima 
are found at the atomic sites corresponding to enhanced 
absorption, when the active absorption mechanisms 
are associated with these positions. In Fig. 2(b) on the 
other hand, there are minima at the atomic sites giving 
rise to anomalous transmission. Diffraction conditions 
for which the electron distribution F(q) has a higher 
value on one or the other of the two atomic sites in the 
structure can also be found. In Fig. 3 the value of F(q) 
at the two sites is shown as a function of the angle be- 
tween the incident beam and the zone axis. The calcu- 
lations show that by adjusting the diffraction condi- 
tions, it is possible to enhance scattering processes, and 
hence absorption and emission, associated with one or 
the other of the atomic positions in the structure, e.g. 
to enhance X-ray emission from one of the sites. Thus, 
one will expect that it is feasible to determine on which 
of the two lattices a foreign atom is located from the 
variation in X-ray emission with the direction of the in- 
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cident beam. However, in a NaCl-type structure such 
an application of anomalous absorption effects may 
appear somewhat superfluous, since in this structure 
this would be known from general chemical consider- 
ations. As a more realistic and more complicated ex- 
ample on such an application, let us discuss the cubic 
structure Nb3Sb2Tes. The crystal structure which has 
4 formula groups per unit cell was determined by Jensen 
& Kjekshus (1967), and is shown in Fig. 4. They could, 
however, not distinguish between the atomic positions 
I and II occupied by Sb and Te, due to the very small 
difference in X-ray scattering factors. Three possible 
models were suggested: All Sb in I, all Sb in II, and a 
statistical distribution of Sb in I and II. 

The aim of the calculations relating to this structure 
was to see whether the theoretical variation in X-ray 
emission probability with atomic position and diffrac- 
tion condition would be large enough to allow the dif- 
ferent models to be distinguished on basis of measure- 
ments of X-ray emission as a function of incident beam 
direction. Thus, F(q) was calculated, as in the previous 
example, with the incident beam near the 100 zone axis 
using up to 145 beams. The main features in the distri- 
butions were found, however, to be well described by 
69 beam calculations. This high number of beams 
could be handled on a moderate size computer, CDC 
3300, by choosing the incident beam directions in such 
a way that the eigenvectors could be separated in 
groups with different symmetries (see e.g. Hirsch et aL, 
1965). In the 100 projection a smaller unit cell was 
chosen (thick line in Fig. 4), and all hklgiven refer to this 
cell. Only -~ (dotted line in Fig. 4) of it is discussed below; 
due to symmetry in F(q) the distribution in the rest of 
the unit cell is obtained from this part through symme- 
try operations. In Fig. 5(a) and (b) is shown computed 
F(q) distributions when the incident beam is along the 
zone axis or satisfying the Bragg condition for 440, re- 
spectively. This figure is seen to be analogous to Fig. 3, 
the first case giving enhanced absorption and the second 
case anomalous transmission. It should be pointed out, 
however, that the change in peak height is different at 
the different atomic sites. The variation in F(q) at these 
positions as a functionoftilt is shown in Fig. 6(a). An av- 
erage value per atomic site is given, since equivalent posi- 
tions in the three-dimensional structure are not equiv- 
alent in the projection. Fig. 6(b) shows the variation 
in X-ray emission probability from Sb with beam tilt 
for the three models suggested. From this Figure it is 
seen that on going from incident beam along the zone 
axis to 220 Bragg condition satisfied, the X-ray emis- 
sion from Sb is changed by the factors 3.1, 0.8, 1.4 for 
all Sb in I, all Sb in II, and a statistical distribution of 
Sb in I and II, respectively. It thus appears possible to 
distinguish between these three models with the method 
suggested. 

6. Conclusions 

The aim of a theoretical description of diffuse scattering 
in the presence of Bragg scattering may be said to be 

twofold. On one hand one wants a theory for the var- 
ious diffraction effects in the background scattering, 
e.g. Kikuchi lines, where the focus of interest frequently 
lies more with the Bragg scattering than in the non- 
periodic part of the structure. The second aim is to at- 
tain a theoretical basis for comparison of observed 
patterns of diffuse scattering with physical models for 
the non-periodic parts of the structure. This aim is pur- 
sued in the present paper through the study of the scat- 
tering function I(s, h) = (f(s)f*(s  + h)> in which all first 
order contributions from the non-periodic part of the 
potential are included. It is shown that this function, 
which actually appeared already in Kainuma's (1955) 
paper on Kikuchi lines as 'structure factor for the Ki- 
kuchi line', can be related to a function R(q,r) of six 
variables in direct space. The function R may properly 
be called 'distribution-correlation function', since the 
dependence on the vector q reflects the distribution 
over the average unit cell of the spatial fluctuations 
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Fig. 5. Calculated electron probability density for Nb3Sb2Tes 
shown for the area corresponding to the dotted triangle in 
Fig. 5. I and II are the Sb and Te positions. 69 beams. (a) In- 
cident beam along zone axis. (b) 440 Bragg condition fulfilled. 
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responsible for diffuse scattering, whereas the r-depen- 
dence is related to correlations as in the Patterson or 

correlation function, P ( r ) -  I R(q, r)dq. 

The idea that dynamical Bragg scattering may en- 
hance or reduce diffuse scattering from different parts 
of the unit cell and hence provide information about 
the positions of sources of diffuse scattering is not new; 
it may be said to be inherent in the well known descrip- 
tion in direct space of the Bormann effect in terms of 
different probability density distributions across the 
lattice planes for the various wavefields. The effect of 
substitutional and interstitial atoms on the anomalous 
absorption in the two beam case has been studied by 
Hall, Hirsch & Booker (1966). A similar concept is con- 
tained in the classical particle description for the so- 
called string effect for charged particles (Linhard, 1965). 
It is doubtful, however, whether Linhard's theorywill be 
successful in complicated cases like the ones treated 
above (for a discussion see e.g. Howie, 1966). 

The present theory can be said to corroborate this 
direct space description from a diffraction viewpoint. 
In particular, the introduction of the function R(q,r) 
leads to an interpretation of the imaginary potential - 
which originally was introduced in a phenomenological 
way - in terms of potential fluctuations. However, the 
present theory goes beyond that for anomalous absorp- 
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tion since the absorption contributions from the var- 
ious points, s, in reciprocal space can be analysed in 
terms of correlations as well as distribution of the fluc- 
tuations. 

The present theory is restricted to the first order in 
the non-periodic potential. This limits the application 
to thin crystals when strong diffuse scattering, e.g. from 
plasmons, is considered. For weaker diffuse scattering 
this limitation may not be so serious, especially if an- 
omalous absorption is included in the Bragg scattering 
matrix elements. It ought to be mentioned, however, 
that even if the validity of the present treatment in this 
way can be extended, the effects may be gradually 
washed out in a thicker crystal, as was found by Hall 
(1966) in his study of X-ray emission in the two beam 
case. The neglect of thickness oscillations stems from 
practical considerations, it is hard to see much gain in 
including such effects at the present stage. 

The application of the present theory is simplest in 
anomalous absorption type experiments, where 
~I(s,h)ds is studied, when for example the anomalous 
absorption is measured in the emission of secondary 
radiation. From the theoretical examples studied, it 
appears that the location of atom positions by means 
of the variation of emitted X-ray intensity with diffrac- 
tion condition for the incident electron beam, will be 
feasible. The inelastic scattering from core electrons 
may be studied in much the same way, the correlation 
and hence the angular distribution is here relatively un- 
important. 

The treatment of anomalous effects in disorder and 
thermal scattering, according to the present theory is 
certainly more complicated, but appears to hold out 
interesting prospects. Here the interesting feature with 
this representation lies with the possibility of associat- 
ing correlations with positions in the unit cell. These 
possibilities of e.g. identifying short range order at a 
particular lattice site or identifying the atoms taking 
part in a particular lattice vibration, will have to be 
examined in more detail, however. 
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Fig. 6. (a) Average value of calculated electron probability den- 
sity for the incident electron at the sites Nb, I and II shown 
for different diffraction conditions. (b) Relative emission prob- 
ability of characteristic X-rays from Sb according to the 
three models: all Sb in I, all Sb in II, Sb statistically distrib- 
uted I and II. Right-hand side of both figures: incident beam 
in the 100 plane: left-hand side: incident beam in i10 plane. 

APPENDIX 

The width of the function ~bK (q), § 4 

It may be felt sufficient merely to state that the prob- 
ability density for the ls electron in a medium or heavy 
atom is so narrow that any distribution associated with 
the K-shell will also be narrow. Let us indicate some 
calculations pertaining to this question, however. 

The Fourier coefficient, or form factor, for ~sK is 

Fls(h)=l{( exp [isrj] exp [i(h-s)rj] ) s 2 ( h _  s)2 

( e -xp [(srJ]2 (e-xp-[{(-h-'s-)rfl--~-) ds (A 1) 
s 2 ( h -  s) 2 

where ( exp [isrj]) =fls(S) is the form factor for the ls 
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electron, see e.g. Freeman (1959), and the integration 
is carried out in a section through the origin of recip- 
rocal space. It is convenient to rewrite equation (A 1) 

F~s(h)=f 1-f(s)-f([s-h)+f(h)s 2(S -- h) 2 ds 

1 -f(ls-hl) ( l - f  (s) x -d s  
,~ S 2 ( s - h )  2 " 

The integration can be performed analytically when 
f(s)  is written as a sum of terms of the type ~xE/((X 2-~- $2). 
Since we are interested only in an estimate of the width, 
one such term may be sufficient, c~ is determined by 
fitting this to the inner part of the ls form factor; then 

= V2Z/aH where Z is the atomic number, aH the Bohr 
radius and a hydrogen type function is used for the l s 
electron. Then 

h E + tX 2 '(0~2 -~- F x s ( h ) ~ 2 ~ { l n ( ~ ) /  h 2) 

- arc tanh (1 + 4a2/h2)1/Z/h(h2+4ctz)i/2~ 
J 

We are here dealing with a single atom; hence, q)K(q) is 
obtained by a Fourier integral in the plane. Due to the 
symmetry this leads to a Hankel transform,¢K(q)= 

I Fxs(h)Jo(qh)dh. 

Since c~ is quite large (150 A-l), the main contribution 
apart from very small values of r will come from the 
region h ~ ~. Here we have found that Fls(h) is reason- 
ably well represented by (4n/~2)Ko(2el/4h/yct), so that 
the Hankel transform leads to 

¢~(q) oc(qZ + 4eVZ/~Eeg-i 

[see e.g. Bateman (1954)] which has a width somewhat 
less than 0.02 A for Z ~  50. 
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